

Industrial Range PM Couplings

The Correct Solution

PM Features And Benefits

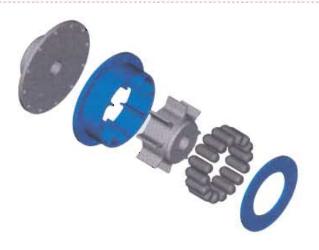
POONA COUPLINGS have been leaders in the design and manufacture of flexible couplings for over 20 years. with the following capabilities:

- Approved to ISO 9001:2000
- Total quality system
- Latest CAD technology
- Torsional vibration analysis
- Transient and finite element analysis

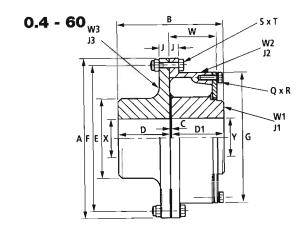
Applications

- Metal manufacture
- Mining and mineral processing
- Pumps
- Fans
- Compressors
- Cranes and hoists
- Pulp and paper industry
- General heavy duty industrial applications

Features


- Severe shock load protection
- Intrinsically fail safe
- Maintenance free
- Vibration control
- Zero backlash
- Misalignment capability
- Low cost

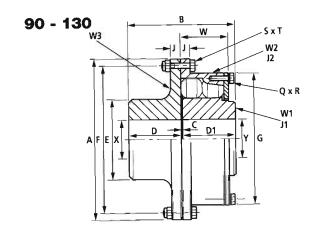
Benefits

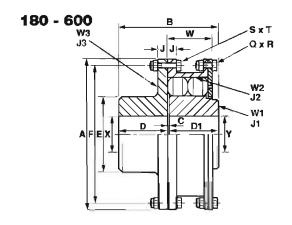

- Giving protection and avoiding failure of the driveline under high transient torques.
- Ensuring continuous operation of the driveline in the unlikely event of rubber failure or damage.
- With no lubrication or adjustment required resulting in low running costs.
- Achieving low vibratory loads in the driveline components by selection of optimum stiffness characteristics.
- Eliminating torque amplificatins through pre compression of the rubber elements.
- Allows axial and radial misalignment between the driving and driven machines.
- The PM Coupling gives the lowest lifetime cost.

Construction details

- PM Couplings up to PM 40 are made out of special grade of S.G. Iron. Couplings from PM 60 to PM 600 are made of steel casting
- Separate rubber elements with a choice of grade and hardness, styrene butadiene with 60 shore hardness (Sm60) being the standard.
- Rubber elements loaded in compression.
- Rubber elements are totally enclosed.

PM Shaft To Shaft PM 0.4 To PM 60

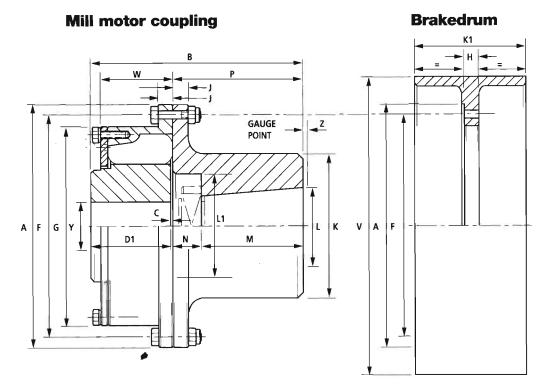



Dimensions, Weight, Inertia and Alignment

COUPLING SIZE	igiit, iiici	
B		60
C	Α	568
D	В	377.5
D1 S1 S4 64 70 86 95 109 125 143 162 E	С	5.5
F	D	186
F	D1	186
DIMENSIONS (mm) G 133 157 181 221 222 245 280 320 367 418 (mm) Q 9.5 11 12 14.5 11 13.5 14 16 18.5 21 (mm) Q 5 5 6 6 8 9 102 11 11 16 17 14 15 6 6 8 8 15 15 6 6 8 9 102 11 11 11 1	E	288
DIMENSIONS (mm) J 9.5 11 12 14.5 11 13.5 14 16 18.5 21 (mm) Q 5 5 6 6 8 12 16 16 6 8 8 12 12 12 12 16 16 8 9 102 11 12 14 14 15 4 15 4 15 4 10 1 </td <td>F</td> <td>528</td>	F	528
(mm) Q 5 5 6 6 8 8 8 8 8 R M8 M8 M8 M8 M8 M8 M10 M12 M16 M16 M16 S 8 8 8 8 12 12 12 12 12 12 12 12 16 T M8 M8 M8 M8 M8 M12 M12 M16 M16 M16 W 36 39 46 60 81 89 102 118 134 152.7 MAX. X&Y (4) 41 51 64 73 85 95 109 125 143 162 MIN. X (5) 27 27 37 40 50 55 65 70 85 105 RUBBER Per Cavity 1 1 1 1 1 1 1 1 1 1 1 <td>G</td> <td>479</td>	G	479
R M8 M8 M8 M8 M8 M10 M10 M12 M16 M16 M16 S 8 8 8 8 8 12 12 12 12 12 12 12 16 T M8 M8 M8 M8 M8 M8 M12 M12 M10 M16 M16 M16 M16 M16 W 36 39 46 60 81 89 102 118 134 152.7 MAX.X&Y(4) 41 51 64 73 85 95 109 125 143 162 M1N.X(5) 27 27 35 37 50 62 68 80 90 105 M1N.Y 27 27 37 40 50 55 65 70 85 105 M1N.Y 27 27 37 40 50 55 65 70 85 105 M105 M105 M105 M105 M10	J	24
S 8 8 8 8 12 12 12 12 12 16 T M8 M8 M8 M8 M8 M8 M12 M12 M16 M16 M16 W 36 39 46 60 81 89 102 118 134 152.7 MAX. X&Y (4) 41 51 64 73 85 95 109 125 143 162 MIN. X (5) 27 27 35 37 50 62 68 80 90 105 RUBBER Per Cavity 1	Q	8
T M8 M8 M8 M8 M8 M12 M12 M16 M16 M16 W 36 39 46 60 81 89 102 118 134 152.7 MAX. X&Y (4) 41 51 64 73 85 95 109 125 143 162 MIN. X (5) 27 27 35 37 50 62 68 80 90 105 RUBBER Per Cavity 1	R	M20
W 36 39 46 60 81 89 102 118 134 152.7 MAX. X&Y (4) 41 51 64 73 85 95 109 125 143 162 MIN. X (5) 27 27 35 37 50 62 68 80 90 105 MIN. Y 27 27 37 40 50 55 65 70 85 105 RUBBER Per Cavity 1 1 1 1 1 1 1 1 1	S	12
MAX. X&Y (4) 41 51 64 73 85 95 109 125 143 162 MIN. X (5) 27 27 35 37 50 62 68 80 90 105 RUBBER Per Cavity 1	Т	M20
MIN. X (5) 27 27 35 37 50 62 68 80 90 105 MIN. Y 27 27 37 40 50 55 65 70 85 105 RUBBER Per Cavity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W	175
MIN. Y 27 27 37 40 50 55 65 70 85 105 RUBBER Per Cavity 1 <t< td=""><td>MAX. X&Y</td><td>186</td></t<>	MAX. X&Y	186
RUBBER Per Cavity 1	MIN. X (5)	120
ELEMENTS Per Coupling 10 10 12 12 16 2450 2380 WEIGHT(3) W2 2.0 2.9 4.6 6.0 6.55 10.92 15.86 24.59 35.34 50.47 (kg) W3 2.8 4.3 6.6 10.0 10.84 15.14 21.24 33.03 47.80 69.32 TOTAL 6.7 10.0 15.7 22.9 26.3 37.7 54.8 84.6 123.3 179.3 INERTIA(3) J1 0.002 0.004 0.008	MIN. Y	110
MAXIMUM SPEED (rpm) (1) 7200 6300 5400 4500 4480 3860 3450 2975 2650 2380 W1 1.9 2.8 4.5 6.9 8.9 11.62 17.74 27.0 40.18 59.5 WEIGHT(3) W2 2.0 2.9 4.6 6.0 6.55 10.92 15.86 24.59 35.34 50.47 (kg) W3 2.8 4.3 6.6 10.0 10.84 15.14 21.24 33.03 47.80 69.32 TOTAL 6.7 10.0 15.7 22.9 26.3 37.7 54.8 84.6 123.3 179.3 INERTIA(3) J1 0.002 0.004 0.008 0.018 0.026 0.050 0.101 0.203 0.392 0.756	Per Cavity	1
W1 1.9 2.8 4.5 6.9 8.9 11.62 17.74 27.0 40.18 59.5 WEIGHT(3) W2 2.0 2.9 4.6 6.0 6.55 10.92 15.86 24.59 35.34 50.47 (kg) W3 2.8 4.3 6.6 10.0 10.84 15.14 21.24 33.03 47.80 69.32 TOTAL 6.7 10.0 15.7 22.9 26.3 37.7 54.8 84.6 123.3 179.3 INERTIA(3) J1 0.002 0.004 0.008 0.018 0.026 0.050 0.101 0.203 0.392 0.756	Per Couplin	16
WEIGHT(3) W2 2.0 2.9 4.6 6.0 6.55 10.92 15.86 24.59 35.34 50.47 (kg) W3 2.8 4.3 6.6 10.0 10.84 15.14 21.24 33.03 47.80 69.32 TOTAL 6.7 10.0 15.7 22.9 26.3 37.7 54.8 84.6 123.3 179.3 INERTIA(3) J1 0.002 0.004 0.008 0.018 0.026 0.050 0.101 0.203 0.392 0.756	rpm) (1)	2050
(kg) W3 2.8 4.3 6.6 10.0 10.84 15.14 21.24 33.03 47.80 69.32 TOTAL 6.7 10.0 15.7 22.9 26.3 37.7 54.8 84.6 123.3 179.3 INERTIA(3) J1 0.002 0.004 0.008 0.018 0.026 0.050 0.101 0.203 0.392 0.756	W1	89.45
TOTAL 6.7 10.0 15.7 22.9 26.3 37.7 54.8 84.6 123.3 179.3 INERTIA(3) J1 0.002 0.004 0.008 0.018 0.026 0.050 0.101 0.203 0.392 0.756	W2	77.80
INERTIA(3) J1 0.002 0.004 0.008 0.018 0.026 0.050 0.101 0.203 0.392 0.756	W3	104.63
	TOTAL	271.9
J2 0.006 0.014 0.019 0.049 0.072 0.149 0.273 0.560 1.041 1.898	J1	1.491
	J2	3.867
J3 0.005 0.013 0.025 0.05 0.058 0.116 0.194 0.406 0.748 1.345	J3	2.719
ALLOWABLE MISALIGNMENT(2)	IGNMENT(2)	
RADIAL (mm) 0.8 0.8 0.8 1.2 1.5 1.6 1.6 1.6 1.9 2.1		2.4
AXIAL(mm) 0.8 1.2 1.2 1.2 1.5 1.5 2.0 2.25 2.5		2.75
CONICAL (degree) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		0.5

- (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
- (2) Installations should be initially aligned as accurately as possible, In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables.
- (3) Weights and inertias are calculated with mean bore for couplings.
- (4) Oversize shafts can be accommodated in large boss driving flanges, manufactured to customer's requirements.
- (5) PM0.4 PM3 driving flanges are available with solid bores on request.

PM Shaft To Shaft PM 90 To PM 600



Dimensions, Weight, Inertia and Alignment

COUPLING SIZ	E	90	130	180	270	400	600
	Α	638	728	798	925	1065	1195
	В	432.5	487	544	623	710.5	812
	С	6.5	7	8	9	10.5	12
	D	213	240	268	307	350	400
	D1	213	240	268	307	350	400
	E	330	373	415	475	542	620
	F	598	680	750	865	992	1122
	G	548	620	-	-	-	-
DIMENSIONS	J	26.5	31	33.5	36	43	52
(mm)	Q	8	8	12	12	12	24
	R	M20	M24	M24	M30	M36	M36
	S	16	16	20	20	20	24
	Т	M20	M24	M24	M30	M36	M36
	W	200	226	252	288.5	328	376
	MAX. X&Y (4)	213	240	268	307	350	400
	MIN. X (5)	140	160	167	182	232	285
	MIN. Y	140	160	170	195	235	285
RUBBER	Per Cavity	2	2	2	2	2	2
ELEMENTS	Per Coupling	32	32	32	32	32	32
MAXIMUM SPEE	D (rpm) (1)	1830	1600	1460	1260	1090	975
	W1	132.0	191.11	262.3	389.0	562.4	813.3
WEIGHT(3)	W2	111.96	165.24	266.78	414.0	633.4	909.1
(kg)	W3	151.78	222.39	297.4	437.3	651.2	946.7
	TOTAL	395.7	578.7	826.5	1240.3	1847	2669.1
INERTIA(3)	J1	2.872	5.330	9.14	17.88	34.03	65.54
	J2	7.188	13.680	28.80	59.30	119.5	220.2
	J3	4.955	9.565	15.35	29.89	60.66	115.7
ALLOWABLE MIS	ALIGNMENT(2)						
RADIAL (mm)		2.8	3.3	3.5	3.9	4.6	5.2
AXIAL(mm)		3.25	3.5	4.0	4.5	5.25	6.0
CONICAL (degree)	0.5	0.5	0.5	0.5	0.5	0.5

- (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
- (2) Installations should be initially aligned as accurately as possible, In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables.
- (3) Weights and inertias are calculated with mean bore for couplings.
- (4) Oversize shafts can be accommodated in large boss driving flanges, manufactured to customer's requirements.

PM Mill Motor Couplings

Brakedrums may be used in conjunction with the whole range of PM couplings and may be bolted on either the driving flange or flexible half side of the coupling, the recess - ØA - locating on the outside diameter of the coupling.

Recommended brake drums for each size of coupling are shown in the table, but ØV is adjustable to suit "Non-standard" applications.

Type PM-SDW Dimensions Table (Ingot Motor)

COUPLING SIZ	E	0	.7	1.3	3		6		12	1	8
MOTOR FRAME S	SIZE	180M	180L	225L	250L	280M	280L	355L	400L	400LX	4501
hp		12.7	16	26	43	63	82	123	170	228	300
rpm		956	958	730	732	734	735	590	590	591	592
	Α	187.3	187.3	215.9	260.3	260	260	338	338	392	392
	В	168	168	178	215	231	231	284.5	324.5	341	341
	С	2	2	2	3	3	3	3.5	3.5	4	4
	D1	54	54	64	70	86	86	109	109	125	125
	F	171.4	171.4	196.8	235	240	240	312	312	360	360
	G	157	157	181	221	222	222	280	280	320	320
	Н	15.3	20.3	18.7	18.9	23.5	23.5	23.5	25.5	26	26
	J	11	11	12	14.5	11	11	14	14	16	16
	K	100	100	125	140	155	185	205	205	205	215
DIMENSIONS	K1	90	110	110	140	180	180	180	225	225	225
(mm)	L	42	42	55	60	75	75	95	100	100	110
	L1	70	70	90	105	120	120	135	155	155	170
	М	84	84	84	107	107	107	132	167	167	167
	N	28	28	28	35	35	35	40	45	45	45
	Р	112	112	112	142	142	142	172	212	212	212
	V	250	315	315	400	500	500	500	630	630	630
	W	36	46	46	60	81	81	102	102	118	118
	MIN.Y	27	27	38	49	50	50	72	72	80	80
	MAX.Y	51	51	64	73	85	85	109	109	125	125
	Z	3	3	3	3	3	3	3	5	5	5

The motor ratings are taken for periodic Duty Classes S4 and S5, 150 starts per hour with a cyclic duration factor at 40% For motors operating outside these ratings, consult Poona Couplings.

PM Mill Motor Couplings

Type PM - mm Dimensions Table (AISE Motor)

Series 6 Mill Motors

COUPLING SIZ	3	0.4	0.	.7	1.3	3	6	1	2	18		27		40
MOTOR FRAME S	SIZE	602	603	604	606	608	610	612	614	616	618	620	622	624
hp		7	10	15	25	35	50	75	100	150	200	275	375	500
rpm		800	725	650	575	525	500	475	460	450	410	390	360	340
	Α	161.9	187.3	187.3	215.9	260.3	260	338	338	392	440	440	440	490
	В	153	172	172	196	219	237	281.5	281.5	318	336.5	336.5	392.5	466
	С	1	2	2	2	3	3	3.5	3.5	4	4.5	4.5	4.5	5
	D1	51	54	54	64	70	86	109	109	125	143	143	143	162
	F	146	171.4	171.4	196.8	235	240	312	312	360	407	407	407	458
	G	133	157	157	181	221	222	280	280	320	367	367	367	418
	Н	13.5	15.3	15.3	18.7	18.9	18.5	18.5	18.5	21	21	21	21	21
	J	9.5	11	11	12	14.5	11	14	14	16	18.5	18.5	18.5	21
	K	102	121	121	133	171	178	190	216	241	254	305	305	305
DIMENSIONS	K1	83	95	95	146	146	171	222	222	286	286	286	286	286
(mm)	L	44.45	50.80	50.80	63.50	76.20	82.55	92.07	107.95	117.47	127.00	149.22	158.75	177.80
	L1	76.2	88.9	88.9	101.6	123.8	127	158.7	158.7	181	203.2	228.6	228.6	228.6
	М	70	83	83	95	111	111	124	124	137	149	168	178	232
	N	31	33	33	35	35	37	45	45	52	40	51	67	67
	Р	101	116	116	130	146	148	169	169	189	189	219	245	299
	V	203	254	254	330	330	406	483	483	584	584	584	584	584
	W	36	39	39	46	60	81	102	102	118	134	134	152.7	152.7
	MIN.Y	22	27	27	38	49	50	72	72	80	92	92	92	105
	MAX.Y	41	51	51	64	73	85	109	109	125	143	143	143	162
	Z	3	3	3	3	3	3	3	3	5	5	5	5	5

Series 8 Mill Motors

COUPLING SIZ	E	0.	.4	0.7	1.3	3		6	1	2	18	27
MOTOR FRAME	SIZE	802	802	803	804	806	808	810	812	814	816	818
hp		7.5	10	15	20	30	50	70	100	150	200	250
rpm		800	800	725	650	575	525	500	475	460	450	410
	Α	161.9	161.9	187.3	215.9	260.3	260.3	260	338	338	392	440
	В	153	153	172	182	203	219	237	281.5	281.5	318	336.5
	С	1	1	2	2	3	3	3	3.5	3.5	4	4.5
	D1	51	51	54	64	70	70	86	109	109	125	143
	F	146	146	171.4	196.8	235	235	240	312	312	360	407
	G	133	133	157	181	221	221	222	280	280	320	367
	Н	13.5	15.3	15.3	18.7	18.9	18.5	18.5	18.5	18.5	21	21
	J	9.5	9.5	11	12	14.5	14.5	11	14	14	16	18.5
	K	102	102	121	121	133	171	178	190	216	241	254
DIMENSIONS	K1	83	95	95	146	146	171	171	222	222	286	286
(mm)	L	44.45	44.45	50.8	50.80	63.50	76.20	82.55	92.07	107.95	117.47	127.0
	L1	76.2	76.2	88.9	88.9	101.6	123.8	127	158.7	158.7	181	203.2
	М	70	70	83	83	95	111	111	124	124	137	149
	N	31	31	33	33	35	35	37	45	45	52	40
	Р	101	101	116	116	130	146	148	169	169	189	189
	V	203	254	254	330	330	406	406	483	483	584	584
	W	36	36	39	46	60	60	81	102	102	118	134
	MIN.Y	22	22	27	38	49	49	50	72	72	80	92
	MAX.Y	41	41	51	64	73	73	85	109	109	125	143
	Z	3	3	3	3	3	3	3	3	3	5	5

PM Technical Data

1.1 Prediction of the System Torsional Vibration Characteristics.

An adequate prediction of the system torsional vibration characteristics can be made by the following method.

- 1.1.1 Use the torsional stiffness as shown in the technical data, which is based upon data measured at a 30°C ambient temperature (C_{Tdvn}).

Rubber Grade	Temp _{max} ⁰C	S,						
SM 60	100	S ₁₁₀₀ = 0.60						
SM 70	100	$S_{1100} = 0.60$ $S_{1100} = 0.44$						
SM 80	100	S ₁₁₀₀ = 0.37						
SM 60 is considered "standard"								

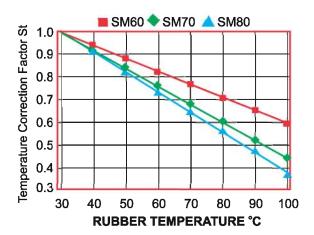
Rubber Grade	Dynamic Magnifier at 30°C (M₃₀)	Dynamic Magnifier at 100°C (M₁₀₀)
SM 60	8	13.1
SM 70	6	13.6
SM 80	4	10.8
SM 60	is considered "star	ndard"

1.1.3 Review calculations 1.1.1 and 1.1.2 and if the speed range is clear of criticals which do not exceed the allowable heat dissipation value as published in the catalogue, then the coupling is considered suitable for the application with respect to the torsional vibration characteristics. If there is a critical in the speed range then actual temperature of the speed range then actual temperature of the coupling will need to be calculated.

1.2 Prediction of the Actual Coupling Temperature and Torsional Stiffness

1.2.1 Use the torsional stiffness as published in the catalogue, this is based upon data measured at 30° C and the dynamic magnifier at 30° C (M_{30})

1.2.2 Compare the synthesis value of the calculated heat load in the coupling (Pk) at the speed of interest to the "Allowable Heat Dissipation" (Pkw).


The coupling temperature rise

$${}^{\circ}C = \text{Temp}_{coup} = \left(\frac{Pk}{Pk \, w}\right) \times 70$$

The coupling temperature = ϑ

- ϑ = Temp_{oup} + Ambient Temp.
- 1.2.3 Calculate the temperature correction factor St from 1.3 (if the coupling temperature>100°C, then use S₁₁₀₀). Calculate the dynamic Magnifier as per 1.4. Repeat the calculation with the new value of coupling stiffness and dynamic magnifier.
- **1.2.4** Calculate the coupling temperature as per 1.2. Repeat calculation until the temperature agrees with the correction factors for torsional stiffness and dynamic magnifier used in the calculation.

1.3 Temperature Correction Factor

1.4 Dynamic Magnifier Correction Factor

The Dynamic Magnifier of the rubber is subject to temperature variation in the same way as the torsional stiffness.

$$M_{\scriptscriptstyle T} = \frac{M_{\scriptscriptstyle 30}}{S} \qquad \qquad \psi_{\scriptscriptstyle T} = \psi_{\scriptscriptstyle 30} x \; S_{\scriptscriptstyle 1}$$

Rubber Grade	Dynamic Magnifier (M₃)	Relative Damping Ψ 30
SM 60	8	0.78
SM 70	6	1.05
SM 80	4	1.57

PM Technical Data - Standard Blocks

PM 0.4 - PM 60

COUPLING SIZE		0.4	0.7	1.3	3	6	8	12	18	27	40	60
kW/ rpm		0.045	0.07	0.14	0.32	0.63	0.84	1.25	1.89	2.83	4.19	6.28
MAXIMUM TORQUE Tkmax	(kNm)	0.43	0.67	1.3	3.0	6.0	8.0	12.0	18.0	27.0	40.0	60.0
VIBRATORY TORQUE Tkw (I	(Nm) (2)	0.054	0.084	0.163	0.375	0.75	1.0	1.5	2.25	3.375	5.0	7.5
ALLOWAABLE DISSIPATED AT AMB. TEMP. 30°C Pkw(W)		266	322	365	458	564	562	670	798	870	1018	1159
MAXIMUM SPEED (rpm)		7200	6300	5400	4500	4480	3860	3450	2975	2650	2380	2050
DYNAMIC TORSIONAL (3) STIFFNESS C _{Tdyn} (MNm/rad)												
@ 0.25 TKN	SM 60	0.003	0.005	0.012	0.029	0.073	0.097	0.146	0.218	0.328	0.485	0.728
	SM 70	0.005	0.008	0.018	0.043	0.104	0.138	0.207	0.311	0.466	0.691	1.036
	SM 80	0.009	0.013	0.030	0.072	0.134	0.179	0.269	0.403	0.605	0.896	1.344
@ 0.50 TKN	SM 60	0.005	0.008	0.019	0.046	0.104	0.138	0.207	0.311	0.466	0.691	1.036
	SM 70	0.007	0.010	0.025	0.058	0.139	0.185	0.277	0.416	0.624	0.924	1.386
	SM 80	0.010	0.015	0.036	0.086	0.181	0.241	0.361	0.542	0.813	1.204	1.806
@ 0.75 TKN	SM 60	0.008	0.012	0.029	0.069	0.154	0.205	0.308	0.462	0.693	1.027	1.540
	SM 70	0.009	0.014	0.033	0.078	0.199	0.265	0.398	0.596	0.895	1.325	1.988
	SM 80	0.012	0.018	0.043	0.102	0.265	0.353	0.529	0.794	1.191	1.764	2.646
@ 1.0 TKN	SM 60	0.0011	0.018	0.043	0.102	0.224	0.299	0.448	0.672	1.008	1.493	2.240
	SM 70	0.012	0.018	0.044	0.105	0.277	0.370	0.554	0.832	1.247	1.848	2.772
	SM 80	0.014	0.021	0.051	0.122	0.382	0.510	0.764	1.147	1.720	2.548	3.822
RADIAL STIFFNESS (N/mm)	SM 60	685	723	1240	2050	6276	6966	7980	9140	10460	11069	12680
@ NO LOAD	SM 70	1070	1130	1950	3240	8400	9320	10680	12230	14000	15960	18280
	SM 80	1740	1820	3210	5190	11400	12650	14500	16600	19000	21660	24810
RADIAL STIFFNESS (N/mm)	SM 60	1430	1510	2600	4300	13180	14630	16780	19200	21970	25050	28700
@ 50% Tkmax	SM 70	1760	1860	3200	5240	13800	15320	17550	20100	23000	26220	30040
	SM 80	2510	2650	4480	7450	16500	18320	20980	24000	27500	31350	35910
AXIAL STIFFNESS (N/mm)	SM 60	458	502	714	970	1060	1176	1347	1543	1766	2010	2306
@ NO LOAD	SM 70	753	828	1180	1640	2748	3050	3495	4000	4580	5220	5980
	SM 80	1040	1160	1670	2230	4120	4573	5240	6000	6867	7828	8968
AXIAL STIFFNESS (N/mm)	SM 60	920	1050	1540	2020	2300	2500	2920	3310	3830	4360	4980
@ 50% Tkmax	SM 70	1100	1360	1920	2610	2750	3050	3500	4000	4580	5220	5980
	SM 80	1250	1450	2060	2750	4120	4570	5240	6000	6870	7830	8970
MAX. AXIAL FORCE (N))	SM 60	66	72	102	128	1501	1668	1913	2178	2502	2845	3267
@ 50% Tkmax(1)	SM 70	78	80	112	140	1648	1825	2099	2374	2747	3139	3581
	SM 80	85	106	148	185	2237	2482	2845	3257	3728	4265	4866

- 1) The Couplings will 'slip' axially when the maximum axial forve is reached.
- 2) At 10Hz only, allowable vibratory torque at higher or lower frequencies fe = $T_{KW}\sqrt{\frac{10 \text{ Hz}}{\text{fe}}}$
- 3) These values should be corrected for rubber temperature as shown in the design information section.

$$TKN = \frac{TKMAX}{3}$$

PM Technical Data - Standard Blocks

PM 90 - PM 600

COUPLING SIZE		90	130	180	270	400	600
kW/ rpm		9.43	13.62	18.86	28.29	41.91	62.86
MAXIMUM TORQUE Tkmax (MAXIMUM TORQUE Tkmax (kNm)		130.0	180.0	270.0	400.0	600.0
VIBRATORY TORQUE Tkw (I	(Nm) (2)	11.25	16.25 22.5 3		33.75	50.00	75.00
ALLOWAABLE DISSIPATED AT AMB. TEMP. 30°C Pkw(W)		1209	1369	1526	1735	1985	2168
MAXIMUM SPEED (rpm)		1830	1600	1460	1260	1090	975
DYNAMIC TORSIONAL (3) STIFFNESS C _{Tdyn} (MNm/rad)							
@ 0.25 TKN	SM 60	1.092	1.577	2.184	3.276	4.853	7.280
_	SM 70	1.554	2.245	3.108	4.662	6.838	10.360
	SM 80	2.016	2.912	4.032	6.048	8.960	13.440
@ 0.50 TKN	SM 60	1.554	2.245	3.108	4.661	6.838	10.360
_	SM 70	2.079	3.003	4.158	6.237	9.240	13.860
	SM 80	2.709	3.913	5.418	8.127	12.040	18.060
@ 0.75 TKN	SM 60	2.310	3.337	4.620	6.720	10.269	15.400
_	SM 70	2.982	4.307	5.964	8.946	13.251	19.880
	SM 80	3.969	5.733	7.938	11.907	17.64	26.480
@ 1.0 TKN	SM 60	3.360	4.853	6.720	10.080	14.931	22.400
	SM 70	4.158	6.006	8.316	12.474	18.480	27.720
	SM 80	5.733	8.281	11.466	17.199	25.480	38.220
RADIAL STIFFNESS (N/mm)	SM 60	14500	16400	18270	20920	23820	27300
@ NO LOAD	SM 70	20916	23646	26350	30170	34340	39370
	SM 80	28200	32100	35750	40945	46600	53400
RADIAL STIFFNESS (N/mm)	SM 60	32820	37110	41350	47350	53890	61780
@ 50% Tkmax	SM 70	34360	38850	43290	49560	56420	64680
	SM 80	41100	46450	51760	59260	67460	77330
AXIAL STIFFNESS (N/mm)	SM 60	2638	2980	3324	3800	4332	4966
@ NO LOAD	SM 70	6840	7740	8620	9870	11230	12880
	SM 80	10260	11600	12924	14800	16844	19310
AXIAL STIFFNESS (N/mm)	Sm60	5720	6460	7200	8240	9380	10760
@ 50% Tkmax	SM 70	6840	7740	8620	9870	11230	12880
	SM 80	10260	11600	12920	14800	16840	19310
MAX. AXIAL FORCE (N))	SM 60	3728	4218	4709	5396	6131	7034
@ 50% Tkmax(1)	SM 70	4101	4640	5160	5915	6730	7720
159	SM 80	5572	6298	7014	8025	9143	10477

- 1) The Couplings will 'slip' axially when the maximum axial forve is reached.
- The Couplings will slip axially when the maximum axial letter is a state of the At 10Hz only, allowable vibratory torque at higher or lower frequencies fe = $T_{KW}\sqrt{\frac{10 \text{ Hz}}{\text{fe}}}$
- These values should be corrected for rubber temperature as shown in the design information section.

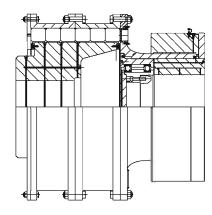
$$TKN = \frac{TKMAX}{3}$$

PM Technical Data - Special Round Blocks

PM 12 - PM 600

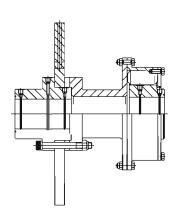
COUPLING SIZE		12	18	27	40	60	90	130	180	270	400	600
kW/ rpm		1.25	1.89	2.83	4.19	6.28	9.43	13.62	18.86	28.29	41.91	62.86
NORMAL TORQUE Tkw (kNn	ո)	3.2	4.8	7.2	10.67	15.99	24.00	34.67	48.0	72.0	106.67	159.99
MAXIMUM TORQUE Tkmax (kNm) (2)	12.0	18.0	27.0	40.0	60.0	90.0	130.0	180.0	270.0	400.0	600.0
VIBRATORY TORQUE Tkw (k	(Nm) (2)	1.0	1.5	2.25	3.334	5.0	7.5	10.833	15.0	22.5	29.0	42.75
ALLOWAABLE DISSIPATED AT AMB. TEMP. 30°C Pkw(W)		130	150	180	220	260	300	340	375	440	490	565
MAXIMUM SPEED (rpm)		3450	2975	2650	2380	2050	1830	1600	1460	1260	1090	975
DYNAMIC TORSIONAL (3) STIFFNESS C _{Tdyn} (MNm/rad)												
@ 0.25 TKN	SM 60	0.053	0.08	0.12	0.18	0.27	0.613	0.885	1.226	1.839	2.724	4.087
_	SM 70	0.072	0.109	0.163	0.241	0.362	0.895	1.293	1.79	2.685	3.978	5.967
	SM 80	0.1	0.149	0.224	0.322	0.498	0.747	1.079	1.493	2.24	3.319	4.98
@ 0.50 TKN	SM 60	0.088	0.132	0.198	0.293	0.44	0.791	1.143	1.582	2.373	3.516	5.273
	SM 70	0.104	0.155	0.233	0.345	0.52	1.05	1.517	2.1	3.15	4.667	7
	SM 80	0.159	0.239	0.358	0.53	0.796	1.193	1.724	2.387	3.58	5.304	7.956
@ 0.75 TKN	SM 60	0.168	0.251	0.377	0.559	0.84	1.154	1.667	2.308	3.462	5.129	7.693
	SM 70	0.162	0.243	0.364	0.539	0.809	1.317	1.902	2.634	3.951	5.853	8.78
	SM 80	0.214	0.321	0.481	0.713	1.069	1.603	2.316	3.207	4.81	7.126	10.689
@ 1.0 TKN	SM 60	0.285	0.427	0.641	0.948	1.424	1.91	2.759	3.82	5.73	8.489	12.733
	SM 70	0.256	0.385	0.577	0.855	1.282	1.85	2.672	3.7	5.55	8.222	12.333
	SM 80	0.328	0.491	0.737	1.092	1.638	2.457	3.549	4.913	7.37	10.919	16.378
RADIAL STIFFNESS (N/mm)	SM 60	2619	3000	3433	3914	4497	5132	5798	6464	7398	8438	9657
@ NO LOAD	SM 70	3742	4286	4905	5592	6425	7333	8284	9236	10570	12050	13798
	SM 80	6138	7030	8044	9170	10538	12025	13586	15147	17335	19770	22628
RADIAL STIFFNESS (N/mm)	SM 60	9510	10900	12470	14215	16300	18640	21000	23480	26870	30650	35070
@ Tkn	SM 70	9056	10374	11870	13530	15550	17745	20048	22350	25580	29176	33390
	SM 80	9132	10460	11968	13644	15678	17892	20214	22535	25790	29410	33666
AXIAL STIFFNESS (N/mm)	SM 60	1122	1285	1470	1675	1925	2198	2482	2768	3168	3613	4135
@ NO LOAD	SM 70	1495	1710	1960	2234	2568	2930	3310	3690	4220	4818	5514
	SM 80	2545	2915	3335	3800	4368	4986	5632	6278	7187	8197	9380
AXIAL STIFFNESS (N/mm)	SM 60	2918	3340	3825	4360	5010	5718	6460	7200	8242	9400	10750
@ TKN	SM 70	3067	3510	4020	4580	5266	6000	6790	7570	8660	9880	11300
	SM 80	3218	3686	4218	4808	5526	6306	7124	7942	9090	10368	11865
MAX. AXIAL FORCE (N) @ T	KN (1)	2943	3335	3728	4415	5003	5690	6475	7161	8240	9418	10791

¹⁾ The ouplings will 'slip' axially when the maximum axial forve is reached.

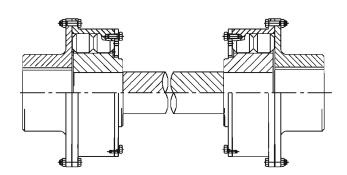

²⁾ At 10Hz only, allowable vibratory torque at higher or lower frequencies fe = $T_{KW}\sqrt{\frac{10 \text{ Hz}}{\text{fe}}}$

³⁾ These values should be corrected for rubber temperature as shown in the design information section.

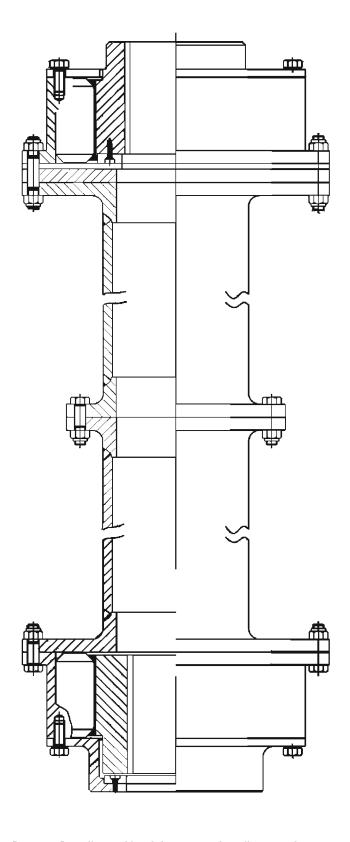
PM Design Variations


The PM Coupling can be adapted to meet customer needs as can be seen from some of the design variations shown below. For a more coprehensive list contact Renold Hi-Tec.

Torque Limiting Coupling

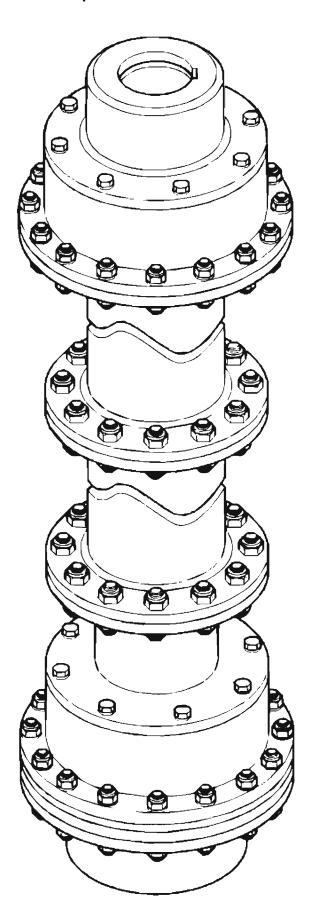

Combination with a torque limiting device to prevent damage to driving and driven machine under shock load.

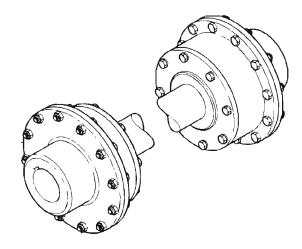
Brake Disk Coupling


Combination with a brake disc, for use on cranes, fans and conveyor drives. (Brake drum couplings also available.)

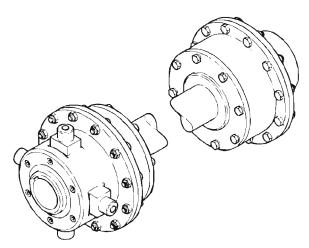
Cardan Shaft Coupling

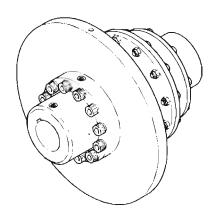
Cardan Shaft Coupling. Used to increase the distance between shaft ends and give a higher misalignment capability.


Vertical Spacer Coupling


Spacer Couplings. Used increase the distance between shaft ends and allow access to driven and driving machine.

PM Design Variations


The PM coupling range can be adapted to meet customer needs. Below are some of the arrangements that have been produced.


For a more comprehensive list contact Poona Couplings

Cardan shaft coupling used to increase the distance between shaft ends and give a higher misalignment capability.

Combination with a torque limiting device to prevent damage to driving and driven machine under shock loads.

Coupling with a brake disc for use on cranes, fans and conveyor drives.

Selection Procedure

 From the continuous Power (P) and operating Speed (n) calculate the Application Torque T_{NORM} from the formula:

 $T_{NORM} = 9549 X (P/n) Nm$

- Select Prime Mover Service Factor (Fp) from the table below.
- Select Driven Equipment Service Factor (Fm) from Page 15.
- The minimum Service Factor has been set at 1.5.
- Calculate T_{MAX} from the formula :

TMAX = Tnorm (Fp+ Fm)

- Select Coupling such that T_{MAX} < T_{kmax}
- Check n < Coupling Maximum Speed (from coupling technical data.)
- Check Coupling Bore Capacity such that dmin<d< dmax.
- Consult the factory for alternatives, if catalogue limits are exceeded.

N. B. If you are within 80% of maximum speed, dynamic balancing is required.

 T_{NORM} = Application Torque (Nm)

 T_{MAX} = Peak Application Torque (Nm)

Nominal Coupling Rating according to DIN 740 (kNm)

(with service factor = 3 according to Renold Hi-Tec Coupling standard)

T_{KN} = Maximum Coupling Rating According to DIN 740 (kNm)

p = Continuous Power to be transmitted by coupling (kW)

n = Speed of coupling application (rpm)

Fp = Prime Mover Service Factor
Fm = Driven Equipment Service Factor
dmax = Coupling maximum bore (mm)
dmin = Coupling minimum bore (mm)

It is the responsibility of the system designer to ensure that the application of the coupling does not endanger the other constituent components in the system. Service factors given are an initial selection guide.

Prime mover service factors

Prime Mover	FP		
Diesel Engine	1 Cylinder		*
	2 Cylinder		*
	3 Cylinder		2.5
	4 Cylinder		2.0
	5 Cylinder		1.8
	6 Cylinder		1.7
More than	6 Cylinder		1.5
Vee Engine			1.5
Petrol Engine			1.5
Turbine			0
Electric Motor			0
Induction Motor			0
Synchronours Mo	tor		1.5
Variable Speed*			
Synchronous Con	verter (LCI)	-6 pulse	1.0
		- 12 pluse	0.5
PWM/Quasi Squa	re		0.5
Cyclo Converter	0.5		
Cascade Recover	1.5		

^{*} The application of these drive types is highly specialised and it is recommended that Poona Couplings is consulted for further advice.

Selection Example

Product Range

 Selection of Induction Motor 800 KW at 1498 rpm driving a Rotary Pump.

Р	=	800 kW	n	=	1498 rpm
dm	=	95 mm	dm	=	85 mm
temp	=	30°C	Fp	=	0
Fm	=	2			

T_{NORM} = (P/n) x 9549 Nm = (800/1498)x 9549 Nm = 5.1 kNm

 T_{MAX} = T_{NORM} (Fp+ Fm) = 5.1 (0+2) kNm = 10.2 kNm

 The application requires a steel coupling (by customer specification) and PM type coupling should be selected. Examination of PM catalogue shows Pm12 as

 $T_{\text{MAX}} = 12 \text{ kNm}$

which satisfies the condition

- $T_{MAX} < T_{kmex} (10.2 < 12.0) \text{ kNm}$
- n<Coupling Maximum Speed (1498<3450) rpm
- dmin<dp<dmax (72<95<109) mm
- dmin<dm<dmax(72<85<109) mm

Transient Analysis

Calculated Examples

Illustrated below are two different types of transient torsional vibrations analysis that can be produced by Renold Hi-Tec Engineers.

This ensures optimum solutions are reached by the correct selection, of torsional stiffness and damping characteristics of the coupling.

Whilst the synchronous resonance and synchronous convertor (LCI) examples are shown, other applications which Renold Hi-Tec Couplings have experience of include, Torque Amplification, Electrical Speed Control Devices, PWM, Scherbius/Kramer, Short-Circuit and any re-connection of electrical circuits on the mechanical systems.

Example 1

Since June 1962 we have engineered flexible couplings for Synchronous Motor applications to reduce by damping, the damaging vibratory torques imposed into system when accelerating through the first resonant frequency.

Table A

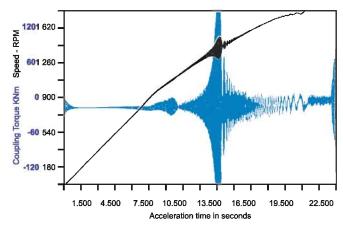


Table A shows vibrating torque experienced in the motor shaft when the system is connected rigidly (or by a gear or membrane coupling) to the driven system.

Table B

Table B shows the same system connected by DCB coupling. A PM type coupling is also used in such applications.

Example 2

We have been engineering flexible couplings for Synchronous Convertor (LCI) drives to control the forced mode conditions through the first natural frequency by judicial selection of torsional stiffness and damping.

Table C

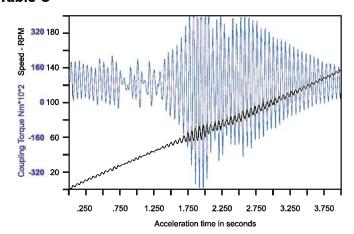


Table C shwos a typical motor/fan system connected rigidly (or through a gear or memberane coupling) when damaging torques would have been experienced in the motor shaft.

Table D

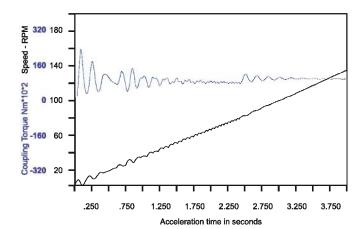


Table D shows the equivalent Renold Hi-Tec Couplings engineered solution using a PM coupling.

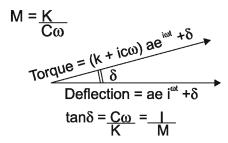
Damping Characteristics

Rubber

- Full laboratory control
- supported by a wide range of specialised equipment
- maintain high quality standards
- consistency in product performance.

Specialised compounds can be developed to meet specific requirements.

Standard compounds are listed below.


Rubber Compounds	
Identification Lable	

Natural	Styrene-Butadience	Neoprence	Nitrile
Red	Green	Yellow	White
(NM)	(SM)	(CM)	(AM)

Resistance to Compression Set Resistance to Flexing Resistance to Cutting Resistance to Abrasion Resistance to Oxidation Resistance to Oil and Gasoline Resistance to Acids Resistance to Water Swelling Service Temperature Max. Continuous Service Temperature Minimum

Good	Good	Fair	Good
Excellent	Good	Good	Good
Excellent	Fair	Good	Good
Excellent	Good	Good	Good
Fair	Fair	Very Good	Good
Poor	Poor	Excellent	Excellent
Good	Good	Fair	Fair
Good	Good	Good	Good
80°C	100°C	100°C	120°C
-50°C	-40°C	30°C	-40°C

Coupling damping varies directly with torsional stiffness and inversly with frequency for a given rubber grade. This relationship is conventionally described by the dynamic magnifier M, varying with hardness for the various rubber types.

This property may also be expressed as the Damping Energy Ratio or Relative Damping, ψ , which is the ratio of the damping energy, AD, produced mechanically by the coupling during a vibration cycle and converted into heat energy, to the flexible strain energy Af with respect to the mean position.

Where C = Specific Damping (Nms/rad) K = Torsional Stiffness (Nm/rad) $\omega = Frequency (Rad/s)$ M = Dynamic Magnifier $\delta = Phase Angle Rad$ $\psi = Damping Energy Ratio$

The rubber compound dynamic magnifier values are

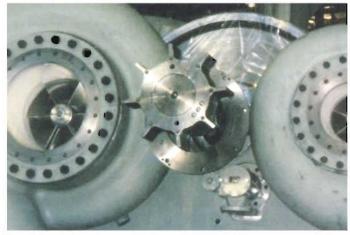
Torque	Mid Torque Mdm AD AD AD
	Deflection>

Rubber Grade	M
NM 45	15
SM 50	10
SM 60	8
SM 70	6
SM 80	4

4	=	AD	=	2π
		Af		М

Driven Equipmen Service Factors

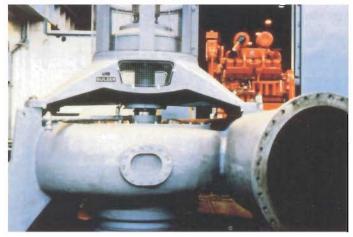
		. - qa.pc oc.	1100 1 0		
Application	Typical Driven Equipment Factor (Fm)	Application	Typical Driven Equipment Factor (Fm)	Eq	al Driven Juipment ctor (Fm)
Agitators		Cauamtan	. 40101 (1 111)	1 4	,,
Pune liquids	1.5	Generators	4.5	- belt	1.5
Liquide and solids	2.0	Alternating	1.5	- bucket	1.5
Liquids - variable density	2.0	Not welding	1.5		
Blowers		Welding	2.2	- chain	1.75
Centrifugal	1.5	Hammer mills		-screw	1.5
Lobe (Rootes type)	2.5	Lumber industry		Dintheader	3.0
Vane	2.0	Barkers -drum type	3.0	Fan - ventilation	2.0
		Edgerfeed	2.5	Haulages	2.0
Brewing and Distilling Botting machinery	1.5	Live rolls	2.5	Lump breakers	1.5
Lauter Tub	1.75	Log haul-incline	2.5	Pulverisor	2.0
		Log haul-well type	2.5	Pump -rotary	2.0
Briquetter Machines	3.0	Off bearing rolls	2.5	-ram	3.0
Can filling machines	1.5	Planer feed chains	2.0	 reciprocating 	3.0
Cane knives	3.0		2.0	- centrifugal	1.5
Car dumpers	3.0	Planer tilting hoist	2.0	Roadheader	2.0
		Sawing machine		Shearer - Longwall	2.0
Car pullers - Intermittent Duty	2.5	Slab conveyor	2.0	Winder Colliery	2.5
Clay working machinery	2.5	Sorting table	2.0	·	
Comperessors		Trimmer feed	2.0	Mixers	
Axial Screw	1.5	Metal Manufacture		Concrete mixers	2.0
Centrifugal	1.5	Bar reeling machine	2.5	Drum type	2.0
Lobe	2.5	Crusher-ore	4.0	Oil industry	
Reciprocating - multi-cylinder	3.0	Feed rolls	*	Chillers	2.0
Rotary	2.0	Forging machine	2.0	Oil well pumping	3.0
Conveyors - uniformly loaded or fed		Rolling machine	*	Paraffin filter press	2.0
Apron	2.0	Roller table	*	Rotary kilns	2.5
Assembly	1.5	Shears	3.0	Paper mills	
Belt	1.5	Tube mill (pilger)	*	•	20
Bucket	2.0	Wire Mill	2.0	Barker-auxiliaries hydraulic	3.0
Chain	2.0		2.0	Barker-mechanical	3.5
Flight	2.0	Metal mills		Barking drum (Spur Gear only)	3.5
Oven	2.5	Drawn bench-carriage	2.5	Beater and pulper	3.5
Screw	2.0	Drawn bench - main drive	2.5	Bleacher	2.0
Conveyors -uniformly loaded or fed		Forming machines	2.5	Calenders	2.0
Apron	2.0	Slitters	2.0	Chippers	2.5
Assembly	1.5	Table conveyors - non-reversing	*	Coaters	2.0
Belt	1.5	- reversing	*	Converting machine (not cutters platers)	2.0
Bucket	2.0	Wire drawing and flattening machine	2.0	Couch	2.0
Chain	2.0	Wire winding machine	2.0	Cutters, platers	3.0
Flight	2.0			Cylinders	2.0
Oven	2.5	Metal rolling mills		Dryers	2.0
Screw	2.0	Blooming mills		Felt stretcher	2.0
Conveyors - heavy duty		Coilers-hot mill & cold mill	2.5		
not uniformly fed		Cold mills	*	Felt whipper	2.0
Apron	2.0	Cooling mills		Jordans	2.25
Assembly	2.0	Door openers	2.0	Line shaft	2.0
Belt	2.0	Draw benches	2.5	Log haul	2.5
Bucket	2.5	Edgerdrives	2.5	Presses	2.5
Chain	2.5	Feed rolls, reversing mills	*	Pulp grinder	3.5
Flight	2.5	Furnace pushers	2.5	Reel	2.0
Oven	2.5	Hot mills	*	Stock chests	2.0
Reciprocating	3.0	Ingot cars	2.0	Suction roll	2.0
Screw	3.0	Manipulators	3.0	Washers and thickeners	2.0
Shaker	4.0	Merchant mills	*	Winders	2.0
Crane & hoists		Piercers	3.0	Brinting process	2.0
All motions	3.0	Pushers rams	2.5	Printing presses	2.0
Crushers		Reel drives	2.0	Propellors	
Ore	3.0	Reel drums	2.0	Marine - fixed pitch	2.0
Stone	3.5	Bar mills	*	- controllable pitch	2.0
Sugar (1)	3.5	Roughing mill delivery table	*	Pullers	
Dredgers		Runout table	*	Barge haul	2.5
Cable reels	2.5	Saws -hot, cold	2.0	-	0
Conveyors	2.0	Screwdown drives	2.5	Pumps Centrifugal	1 =
Cutter head drives	3.5	Skelp mils	*	Centrifugal	1.5
Jig drives	3.5	Slitters	2.0	Reciprocating - double acting single acting - 1 or 2 cylinders	3.0
Manoeuvering winches	3.0	Slabbing mills	*		3.0
Pumps	3.0	Soaking pit cover drives	2.5	3 or more cylinders	3.0
Screen drive	3.0	Straighteners	3.0	Rotary - gear, lobe, vane	2.0
Utility winches	2.0	Table transfer & runabout	2.5	Rubber industry	
Dynamometer	1.5	Thrust block	3.0	Mixed - banbury	3.0
Elevators		Traction drive	3.0 2.0	Rubber calender	2.0
Bucket	3.0			Rubber mill (2 or more)	2.5
Centrifugal discharge	2.0	Tube conveyor rolls	2.0	Sheeter	2.5
Escalators	1.5	Unscramblers	2.5	Tyre building machines	2.5
Freight	2.0	Wire drawing	2.0	Tyre and tube press openers	2.0
Gravity discharge	2.0	Mills, rotary type		Tubers and strainer	2.5
•	2.0	Ball	2.5	Screens	
Fans Centrifugal	4 5	Cement kilns	2.5	Airwashing	1.5
Centrifugal Cooling towers	1.5 2.0	Dryers and coolers	2.5	Grizzly	2.5
Forced draft	2.0	Kilns	2.5	Rotary, stone or gravel	2.0
		Hammer	3.5	Travelling water intake	1.5
Induced draft (without damper contr	ol) 2.0	Pebble	2.5		2.5
Feeders		Pug	3.0	Vibrating	
Apron	2.0	Rod	2.5	Sewage disposal equipment	2.0
Belt	2.0	Tumbling barrels	2.5	Textile industry	2.0
Disc	2.0	·	2.0	Windless	2.5
Reciprocating	3.0	Mining Convoyer, armoured face	2.0		
Screw	2.0	Conveyor - armoured face	3.0	* Use 1.75 with motor cut-out power rating	

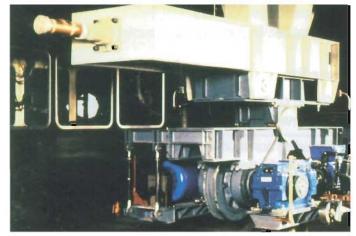

PM Typical Applications

Steel mills. Medium section mill drive.

Conveyor drives.
Couplings fitted on belt conveyor drives.

Compressor drives.
Coupling mounted between electric motor and compressor input shaft.


PM40 coupling on a Peter Brotherhood steam turbine generator.


Grinding mills.
Couplings fitted between electric motors,gearbox and mill.

PM18 and Pm27 coupling on a Hallden-Robertson type 56 flying sheer in Portugal.

Pump sets.
Couplings fitted between electric motors and pumps.

PMO.7 brake drum coupling and a PMO.7 spacer coupling on a John Henderson coal charging car at BSC Dawes Lane.

so far over 3,00,000 couplings have been supplied to satisfied customers all over the world. Holset's Coupling Division was acquired by Renold PLC in UK. Poona Couplings is now suppling couplings worldwide including Renold HiTec Couplings.

OTHER PRODUCT RANGE

TYPE RB

TYPE DCB

Telephone: (905) 856-2653

ROTATOR PRODUCTS LIMITED 101 INNOVATION DRIVE, UNIT#8 WOODBRIDGE, ONTARIO L4H 083

www.rotatorproducts.com

FM63879

Fax: (905) 856-3407